
Upper Bounds on the Time and Space Complexity of
Optimizing Additively Separable Functions

Matthew J. Streeter

Computer Science Department and
Center for the Neural Basis of Cognition

Carnegie Mellon University
Pittsburgh, PA 15213
matts@cs.cmu.edu

Abstract. We present upper bounds on the time and space complexity of find-
ing the global optimum of additively separable functions, a class of functions
that has been studied extensively in the evolutionary computation literature.
The algorithm presented uses efficient linkage discovery in conjunction with
local search. Using our algorithm, the global optimum of an order-k additively
separable function defined on strings of length $ can be found using O($ln($)2k)
function evaluations, a bound which is lower than all those that have previously
been reported.

1 Introduction

A large amount of evolutionary computation research deals with formally defined
classes of problems intended to capture certain aspects of real-world problem diffi-
culty. One prominent example of such a class of problems is N-K landscapes [5].
Finding the global optimum of such functions has been shown to be an NP-complete
problem for K ≥ 2 [10, 13]. Another widely studied problem class is additively sepa-
rable functions, defined by

f(s) = #
i=1

m
fi(s)

where each subfunction fi(s) depends on at most k string positions, and the number of
subfunctions that depend on a particular position j is at most one. This class of prob-
lems plays a central role in the study of competent genetic algorithms [1], and is the
focus of this paper. We will assume we are seeking the maximum of an additively
separable function of order k defined on strings of length $.

Optimizing such functions is primarily a problem of linkage discovery: determining
which pairs of positions belong to the same subfunction. There is much research in
the evolutionary computation literature on linkage discovery, including work on messy
codings and operators [2], the linkage-learning genetic algorithm [3], and probabilistic
model-building genetic algorithms [6, 8, 9]. Once the linkage structure of the function
is known, the global optimum can be found in O(2k

$/k) evaluations by greedy search.

K. Deb et al. (Eds.): GECCO 2004, LNCS 3103, pp. 186−197, 2004.
 Springer-Verlag Berlin Heidelberg 2004

Previous work has shown that additively separable problems of order k defined on
strings of length $ can be solved using Ο(2k

$
2) function evaluations [4, 7]1,2. Empirical

evidence as well as facetwise decompositional models suggest that sub-quadratic
(Ο(2k

$
β) for β < 2) performance is possible. For example, the Bayesian Optimization

Algorithm (BOA) is estimated to require Ο(2k
$

1.65) function evaluations [8]. One of
the contributions of this paper is to rigorously prove that this and much better per-
formance is in fact possible.

This paper addresses the problem of optimizing additively separable functions from
a traditional algorithms perspective. We present an algorithm, prove its correctness,
and prove upper bounds on the number of function evaluations it requires. For now
our sole concern is finding the global optimum of order-k additively separable func-
tions; we are not worried about whether the resulting algorithm also performs well on
real optimization problems such as MAXSAT. The algorithm presented in this paper
will be shown to find a global optimum of an order-k additively separable function
using Ο(2k

$ln($)) function evaluations, a value which is Ο(2k
$

1+ε) for any ε > 0. This
performance claim is confirmed experimentally. We obtain more than an order of
magnitude improvement over BOA on a set of problems previously studied by Pelikan
[9].

The following subsection introduces definitions and notation that are used through-
out the paper. Section 2 gives an overview of how our optimization and linkage dis-
covery algorithms work. Section 3 presents the linkage discovery algorithm in full
detail and analyzes its time complexity. Section 4 presents our optimization algorithm
in full detail, and section 5 presents experiments illustrating it in action. Section 6
discusses the implications and limitations of this work, and section 7 concludes the
paper.

Due to space limitations, some of the proofs of the lemmas and theorems given in
this paper have been omitted from the text. These proofs are available online at [11],
where a Java implementation of our algorithm is also available.

1.1 Definitions and Notation

In this paper we are interested in maximizing a function f defined over binary
strings of some fixed length $. We adopt the following notation:

s.i ≡ the value of the ith character of string s
s[i→x] ≡ a copy of string s with the ith character set to x

Definition 1. ∆fi(s) ≡ f(s[i→(1-s.i)]) – f(s). #

In other words, ∆fi(s) represents the change in fitness that results from flipping the ith

bit of s. This notation was introduced by Munemoto [7].

1 The bound was derived for linkage discovery, but clearly holds for optimization as well.
2 This bound assumes that the probability of discovering all links within a particular subfunc-

tion, and not all links within all subfunctions, is to remain constant as $ increases.

187Upper Bounds on the Time and Space Complexity

Definition 2. Two positions i and j are linked w.r.t. a function f (written %f(i, j)) if
there is some string s such that ∆fi(s[j→0]) ≠ ∆fi(s[j→1]). #

In other words, i and j are linked if, in the context of some string s, i’s affect on
fitness can depend on the value of j. Note that % is symmetric but not reflexive or
transitive.

Definition 3. Two positions i and j are grouped w.r.t. a function f (written $f(i, j)) if
i=j, if %f(i, j), or if there is some sequence of positions i1, i2, ..., in such that %f(i, i1),
%f(i1, i2), ..., %f(in-1, in), and %f(in, j). #

$ is thus the reflexive, transitive closure of %. We shall omit the subscripts on % and
$ when the choice of f is obvious.

Definition 4. A linkage group of a function f is a set γ of one or more integer posi-
tions such that if i ∈ γ then j ∈ γ iff. $(i, j). #

Definition 5. Let f be a function with m linkage groups γ1, γ2, ... γm. Then Γ={γ1, γ2, ...
γm} is the linkage group partition of f. #

It is easy to see that each string position i belongs to exactly one linkage group, so
that a linkage group partition as just defined is in fact a partition of the set of positions
{1, 2, ..., $}. We adopt the notation:

Γ[j] ≡ the linkage group γ ∈ Γ such that j ∈ γ.

The following example will serve to illustrate these definitions. Let

f(s) = (s.1)(s.2) + (s.2)(s.3) + (s.4)(s.5) .

Then f is an additively separable function of order 3 with the two subfunctions f1(s) =
(s.1)(s.2) + (s.2)(s.3) and f2(s) = (s.4)(s.5). The linkage relationships that exist w.r.t. f
are:

%f(1,2), %f(2,3), %f(4,5),
%f(2,1), %f(3,2), %f(5,4).

the linkage groups are γ1={1,2,3} and γ2={4,5}, and the linkage group partition Γ is
{γ1, γ2}.

Intuitively, it should be clear that there is a one-to-one relationship between sub-
functions and linkage groups. Namely, if f has m linkage groups γ1, γ2, ... γm then we
can write f as a sum of subfunctions f1, f2, ..., fm where each fi depends only on the
characters at the positions in γi. We prove this formally in theorem 2.

188 M.J. Streeter

2 Overview of the Algorithm

This section gives a high-level overview of how our algorithm works.
The algorithm uses a randomized test that is guaranteed to succeed with probability

at least 2-k to detect linkage (interaction) between a given position i and some other
position in the string. When the test succeeds it reveals two strings s and s’ such that
∆fi(s) ≠ ∆fi(s’), and the algorithm then uses binary search to isolate a specific position j
that is linked to i. Each newly discovered link is used to update a linkage group parti-
tion maintained by the algorithm. The algorithm then performs a local search centered
around the best-so-far known string that requires at most 2k steps, and once the linkage
group partition is fully discovered this local search is guaranteed to find a globally
optimum string. The algorithm never discovers the same link twice, and so long as it
is run long enough to discover the complete linkage group partition it is guaranteed to
return a globally optimum string. Figure 1 presents high-level pseudocode for this
algorithm.

Two previous algorithms for linkage discovery used the same randomized test for
linkage as used in this paper [4, 7], but instead of using binary search restricted each
instance of the test to detect linkage between a specific pair of positions i and j, result-
ing in a requirement2 of O(2k

$
2) rather than Ο(2k

$ln($)) function evaluations.

Procedure ASFOPTIMIZE(f, t):
1. Initialize Ω to a random string.
2. Initialize Γ to {{1},{2}, ..., {$}}.
3. Use local search to make Ω optimal with respect to one-bit perturbations.
4. Do t times:

For i from 1 to $:
Perform randomized test for linkage between i and some other position.
If test succeeds then:

Use binary search to find j such that %(i, j).
Update linkage group partition Γ.
Use local search to make Ω optimal with respect to newly discovered
linkage group Γ[i] ∪ Γ[j].

5. Return Ω.

Fig. 1. High-level overview of the optimization algorithm presented in this paper.

3 Detecting Linkage

This section formally defines the procedures used by our optimization algorithm to
discover the linkage group partition for an arbitrary function. Figure 2 and lemmas 1-
2 concern our binary search procedure. Figure 3 and lemmas 3-4 concern our ran-
domized test for linkage. Figures 4-5, lemmas 5-7, and theorem 1 concern our algo-
rithm for finding the linkage group partition of an arbitrary function.

189Upper Bounds on the Time and Space Complexity

Procedure FINDLINKEDPOSITION(f, s, s’, i):
1. assert(∆fi(s) ≠ ∆fi(s’))
2. Let j1, j2, ..., jδ be the δ distinct positions for which the values of s and s’ differ.
3. If δ=1, return j1.
4. Let s2 = s’[j1→s.j1][j2→s.j2]...[j(δ/2-→s.j(δ/2-].
5. If ∆fi(s) ≠ ∆fi(s2) return FINDLINKEDPOSITION(s, s2, i) else return
FINDLINKEDPOSITION(s’, s2, i).

Fig. 2. Procedure FINDLINKEDPOSITION. Given strings s and s’ such that ∆fi(s) ≠ ∆fi(s’), the
procedure performs a binary search to return a position j such that %(i, j).

Lemma 1. If ∆fi(s) ≠ ∆fi(s’), FINDLINKEDPOSITION(f, s, s’, i) returns a value j such
that %(i, j) is true.

Proof: By induction on the hamming distance, δ, between s and s’.
Case δ=1: If s and s’ differ only in one position there must be some j such that s’ =
s[j→s’.j]. Assume without loss of generality that s’.j = 0. Then s.j = 1, so s = s[j→1]
while s’ = s[j→0]. Thus by our assumption that ∆fi(s) ≠ ∆fi(s’) we have ∆fi(s[j→1]) ≠
∆fi(s[j→0]), so by definition %(i, j) is true.
Case δ>1: In step 4, FINDLINKEDPOSITION creates a string s2 that differs from s’ in
(δ/2- positions and from s in 'δ/2, positions. Suppose ∆fi(s) ≠ ∆fi(s2). In this case, the
value j returned in step 5 is FINDLINKEDPOSITION(s, s2, i), so %(i, j) is true by the
induction hypothesis. Otherwise if ∆fi(s) = ∆fi(s2), then because ∆fi(s) ≠ ∆fi(s’) (by
assumption) it must be that ∆fi(s’) ≠ ∆fi(s2). In this case the value j returned in step 4
is FINDLINKEDPOSITION(s’, s2, i), so by the induction hypothesis we have %(i, j). #

Lemma 1 establishes that FINDLINKEDPOSITION performs a binary search to iso-
late a position j such that %(i, j) is true. Lemma 2 then follows from the fact that bi-
nary search on a set of δ positions requires at most 'lg(2δ), iterations.

Lemma 2. If ∆fi(s) ≠ ∆fi(s’), FINDLINKEDPOSITION(f, s, s’, i) performs no more than
4*('lg(2$),-1) function evaluations. #

Procedure TESTFORLINK(f, Γ, i):
1. s := RANDOMSTRING().
2. swrk := RANDOMSTRING().
3. Let j1, j2, ..., jn be the n positions in Γ[i].
4. s’ := swrk[j1→s.j1][j2→s.j2]...[jn→s.jn]
5. If ∆fi(s) ≠ ∆fi(s’), return FINDLINKEDPOSITION(f, s, s’, i).
6. Otherwise return -1.

Fig. 3. Procedure TESTFORLINK. The procedure performs a randomized test for linkage and
returns either a position j such that %(i, j) is true or returns -1 if the test is inconclusive.

190 M.J. Streeter

Lemma 3. If TESTFORLINK(f, Γ, i) returns a value j then either (a) j = -1 or (b) %(i, j)
and j ∉ Γ[i].

Proof: If TESTFORLINK returns at line 6 the lemma is trivially satisfied. Otherwise
the procedure must return at line 5, and by lemma 1 it must return a value j such that
%(i, j) is true. To see that j ∉ Γ[i], note that line 4 guarantees that s and s’ do not
differ in any of the positions in Γ[i], so it is sufficient to show that if
FINDLINKEDPOSITION(f, s, s’, i) returns a value j ≠ -1 then s.j ≠ s’.j. This can easily
be shown by induction on the number of times n that FINDLINKEDPOSITION re-
curses. For n=0, we see by inspection of line 3 of FINDLINKEDPOSITION that s.j ≠
s’.j. For n>0, the induction hypothesis gives either s.j ≠ s2.j or s’.j ≠ s2.j, and it fol-
lows from inspection of lines 2 and 4 that s.j ≠ s’.j. #

In other words, TESTFORLINK only finds links that allow us to make a meaningful
update to Γ.

Lemma 4. If there exists a j such that %(i, j) and Γ[i] ≠ Γ[j], then TESTFORLINK(f, Γ,
i) returns a value other than -1 with probability at least 2-|γ|, where γ is the linkage
group to which i belongs.

Proof: Suppose there exists a j such that %(i, j) and Γ[i] ≠ Γ[j]. By definition of %,
there must be some string s% such that ∆fi(s%[j→0]) ≠ ∆fi(s%[j→1]). Let S denote the
set of strings that agree with s% on all positions in Γ[i]. Letting s and s’ denote the
strings created on lines 1 and 4, respectively, of TESTFORLINK, we note three things.
First, if s ∈ S then s’ ∈ S by inspection of line 4. Second, if s ∈ S then there must be
some r ∈ S such that ∆fi(s) ≠ ∆fi(r). This is true because s%[j→0] and s%[j→1] give
different ∆fi and both belong to S. Third, because ∆fi depends only on the positions in
γ (see lemma 8), for any string r’ that agrees with r on these |γ| positions we have ∆fi(s)
≠ ∆fi(r’). The probability that s ∈ S is 2-|Γ[i]|. Given that s ∈ S, the probability that s’
agrees with r on the remaining |γ|-|Γ[i]| positions in γ is 2-(|γ|-|Γ[i]|) . So the overall prob-
ability that ∆fi(s) ≠ ∆fi(s’) is at least 2-|Γ[i]|2-(|γ|-|Γ[i]|) = 2-|γ|. #

Procedure FINDLINKAGEGROUPS(f, t)
1. Γ := {{1},{2}, ..., {$}}.
2. Do t times:

For i from 1 to $:
j := TESTFORLINK(f, Γ, i)
If j ≠ -1 then Γ := (Γ - {Γ[i]} – {Γ[j]}) ∪ {Γ[i] ∪ Γ[j]}.

3. Return Γ.

Fig. 4. Procedure FINDLINKAGEGROUPS. If run for a sufficiently long time, the procedure
returns the linkage group partition for an arbitrary function f.

Lemma 5 follows from lemma 3 and the manner in which Γ is updated in
FINDLINKAGEGROUPS.

191Upper Bounds on the Time and Space Complexity

Lemma 5. For any t, FINDLINKAGEGROUPS(f, t) returns a partition Γ such that for
any i and j, if j ∈ Γ[i] then $(i, j). #

We do not analyze the behavior of FINDLINKAGEGROUPS directly. Instead we
analyze a simpler algorithm called MARKPOSITIONSA, and prove that its perform-
ance provides a lower bound on that of another algorithm called MARKPOSITIONSB,
which we prove has exactly the same performance as FINDLINKAGEGROUPS.

Procedure MARKPOSITIONSA(π, t)
1. Π:={}.
2. Do t times:

2.1. For i from 1 to $:
2.1.1. With probability π-1,
do:

2.1.1.1. Π := Π ∪ {i}.
3. Return Π.

Procedure MARKPOSITIONSB(f, t, Γf)
1. Π := {}; Γ := {{1},{2}, ..., {$}}.
2. Do t times:

2.1. For i from 1 to $:
2.1.1. j := TESTFORLINK(f, Γ, i).
2.1.2. If j ≠ -1 then:

2.1.2.1. Π := Π ∪ {i}.
2.1.2.2. Γ := (Γ - {Γ[i]} – {Γ[j]})
∪ {Γ[i] ∪ Γ[j]}.
2.1.2.3. If Γ[j] = Γf[j], then Π :=
Π ∪ Γf[j].

4. Return Π.

Fig. 5. Procedures MARKPOSITIONSA and MARKPOSITIONSB, which are used in the analysis
of FINDLINKAGEGROUPS.

Lemma 6. The probability that MARKPOSITIONSA(π, t) returns a set containing all $
positions is (1-(1-π-1)t)$. To ensure that this probability is at least p, we must set t to at
least ln(1-p1/$)/ln(1-π-1), and this expression is O(πln($)) for constant p.

Proof: By inspection, the probability that j ∈ Π for any particular j is 1-(1-π-1)t. Be-
cause each position is independent, the probability that Π contains all $ positions is (1-
(1-π-1)t)$. For this quantity to exceed p, t must satisfy (1-(1-π-1)t)$ ≥ p, and solving this
inequality for t yields:

t ≥
ln 1− p

1
$

$

&
%

)

+
*$

&

%
%

)

+

*
*

ln 1− π −1()
 .

To see that this expression is O(πln($)), observe that -ln(1-π-1) is Θ(π-1) because:

lim
π →∞

−ln 1− π −1()
π −1

= lim
x →0

− ln 1− x()
x

= lim
x →0

1
1− x

= 1 .

where in the first step we have made the change of variable x = π-1 and in the second
step we have used l’Hôpital’s rule. Thus -1/ln(1-π-1) is O(π).

A similar argument shows that -ln(1-p1/$) is O(ln($)) [12], from which the lemma
follows. #

Lemma 7. Let f be an order-k additively separable function with linkage group parti-
tion Γf. Then for any t, the probability that MARKPOSITIONSB(f, t, Γf) returns a set

192 M.J. Streeter

containing all $ positions (i) is at least as high as the probability that
MARKPOSITIONSA(2k, t) returns such a set and (ii) is equal to the probability that
FINDLINKAGEGROUPS(f, t) returns Γf.

Proof: (ii) The code for MARKPOSITIONSB is identical to that for
FINDLINKAGEGROUPS except for the additional bookkeeping needed to maintain Π.
So to prove (ii) it suffices to show just before MARKPOSITIONSB returns, Γ=Γf iff.
Π={1, 2, ..., $}. To prove this it is sufficient to show that for all i’ (1 ≤ i’ ≤ $),
Γ[i’]=Γf[i’] iff. Γf[i’] ⊆ Π. Suppose Γf[i’] ⊆ Π. If any j’ ∈ Γf[i’] was added to Π by
line 2.1.2.3 then by inspection Γ[i’]=Γf[i’]. The other possibility is that all j’ ∈ Γf[i’]
were added to Π by line 2.1.2.1. In this case let J’(Γ) = |{γ: γ ∈ Γ and γ ⊆ Γf[i’]}|.
Initially J’(Γ) is |Γf[i’]|. Each time line 2.1.2.1 adds a member of Γf[i’] to Π, the fol-
lowing line decreases J’(Γ) by 1. But because J’(Γ) must be at least 1 this can hap-
pen at most |Γf[i’]|-1 times, so it must be that at least one i’ ∈ Γf[i] was added to Π by
line 2.1.2.3. The converse (that Γ[i’]=Γf[i’] implies Γf[i’] ⊆ Π) follows from inspec-
tion of lines 2.1.2.2 and 2.1.2.3.

(i) The difference between MARKPOSITIONSA and MARKPOSITIONSB is in the
actions they perform within the inner loop that begins on line 2.1. When this inner
loop is executed for some position i, each of the two algorithms will add i to Π with
some probability. If i ∈ Π already, then executing Π := Π ∪ {i} has no affect, so we
may concern ourselves only with the case i ∉ Π. Whether or not i ∉ Π,
MARKPOSITIONSA adds i to Π with probability exactly 2-k. When i ∉ Π,
MARKPOSITIONSB adds i to Π with a probability that depends on Γ. Thus to prove
part (i), it suffices to show that when i ∉ Π this probability is always at least 2-k, inde-
pendent of Γ. But if i ∉ Π, then by the previous paragraph it must be that Γ[i] ≠ Γf[i]
and lemma 4 guarantees that TESTFORLINK(f, Γ, i) returns a value other than -1 with
probability at least 2-|γ| where γ=Γf[i]. That |Γf[i]| ≤ k follows from the definition of $. #

Theorem 1 follows immediately from lemmas 6 and 7.

Theorem 1. Let f be an order-k additively separable function with linkage group parti-
tion Γf. The probability that FINDLINKAGEGROUPS(f, t) returns Γf is at least
(1-(1-2-k)t)$. To find Γf with probability p we must invoke FINDLINKAGEGROUPS(f,
ln(1-p1/$)/ln(1-2-k)), which will require O(2k

$ln($)) evaluations of f. #

4 Optimizing Additively Separable Functions

Our optimization algorithm uses TESTFORLINK to discover the linkage group parti-
tion Γ in exactly the same manner as FINDLINKAGEGROUPS. Additionally, when-
ever a new linkage group γ is discovered, the optimization algorithm performs a local
search that guarantees discovery of a string Ω that is optimal w.r.t. the linkage group γ.
The result is that whenever the optimization algorithm discovers the linkage group
partition Γ, it also discovers a globally optimum string.

193Upper Bounds on the Time and Space Complexity

Figures 6 and 7 present the code for our algorithm. Lemma 8 and theorem 2 are
presented without proof, and formally establish the connection between the subfunc-
tions that make up an additively separable function and the function’s linkage group
partition. Full proofs are available online [11]. Lemma 9 shows that our optimization
algorithm finds a globally optimum string provided that it discovers the linkage group
partition, and theorem 3 gives its time complexity.

Procedure OPTIMIZEWRTGROUP(f, Ω, γ):
1. Let i1, i2, ..., i|γ| be the positions in γ.
2. For each of the 2|γ| tuples <x1, x2, ..., x|γ|> where xa ∈ {0,1} for 1≤ a ≤ |γ|:

Ω’ := Ω[i1→x1][i2→x2]...[i|γ|→x|γ|].
If f(Ω’) > f(Ω) then Ω := Ω’.

3. Return Ω.

Fig. 6. Procedure OPTMIZEWRTLINKAGEGROUP. Performs a local search to return a string Ω
that is guaranteed to be optimal with regard to a linkage group γ.

Procedure ASFOPTIMIZE(f, t):
1. Ω := RANDOMSTRING().
2. Γ := {{1},{2}, ..., {$}}.
3. For i from 1 to $:

Ω := OPTIMIZEWRTGROUP(f, Ω, Γ[i]).
4. Do t times:

4.1. For i from 1 to $:
j := TESTFORLINK(Γ, i)
If j ≠ -1 then

γ := Γ[i] ∪ Γ[j].
Ω := OPTIMIZEWRTGROUP(f, Ω, γ).
Γ := (Γ - {Γ[i]} – {Γ[j]}) ∪ {γ}.

5. Return Ω.

Fig. 7. Procedure ASFOPTIMIZE. With arbitrarily high probability, returns a global optimum
of an order-k additively separable function f using O(2k

$ln($)) function evaluations.

Lemma 8. Let γ be a linkage group of f, and let s1 and s2 be two strings such that for
all i ∈ γ, s1.i = s2.i. Then ∆fi(s1) = ∆fi(s2). #

Theorem 2. Any function whose largest linkage group is of size k is order-k additively
separable. Specifically, let Γf = {γ1, γ2, ..., γm} be the linkage group partition for f, and
let γi = {αi,1, αi,2, ..., αi,k(i)}, where k(i) = |γi|. Let S0 be a string consisting entirely of
zeroes. Then for all s, f(s) = fΣ(s), where:

fΣ(s) ≡ #
i=1

m
 fi(s.αi,1, s.αi,2, ..., s.αi,k(i)) , and

 fi(β1, β2, ..., βk(i)) ≡ f(S0[αi,1→β1][αi,2→β2]...[αi,k(i)→βk(i)]) + f(S0)(1/m-1). #

194 M.J. Streeter

We are now prepared to make the following definition.

Definition 6. A string s is optimal w.r.t. a linkage group γi = {αi,1, αi,2, ..., αi,k(i)}} if
fi(s.αi,1, s.αi,2, ..., s.αi,k(i)) is maximized. #

Corollary 1. A string s is globally optimal w.r.t. a function f iff. s is optimal w.r.t.
each linkage group of f. #

Corollary 2. If γ is a linkage group for f, then OPTIMIZEWRTGROUP(f, s, γ) returns a
string s’ that is optimal w.r.t. γ. #

Lemma 9. If, when ASFOPTIMIZE(f, n) returns, Γ is the linkage group partition (Γf)
for f, then the string Ω returned by ASFOPTIMIZE(f, n) is globally optimal w.r.t. f.

Proof: If Γ=Γf then ASFOPTIMIZE(n) must have executed the statement Ω :=
OPTIMIZEWRTGROUP(Ω, γ) for every linkage group γ ∈ Γf. Consider the effect of
executing this statement for some particular γ. Immediately after the statement is
executed, Ω must be optimal w.r.t. γ by corollary 2. Because of the way in which Γ is
updated, and noting γ cannot be merged with any other linkage group if we are to have
Γ=Γf, all subsequent calls to OPTIMIZEWRTGROUP(Ω, γ’) must be such that γ and γ’
are disjoint. Such calls do not alter the positions in γ, so once Ω :=
OPTIMIZEWRTGROUP(Ω, γ) has been executed Ω will remain optimal w.r.t. γ until
the function returns. Thus the Ω returned by ASFOPTIMIZE will be optimal w.r.t. all
linkage groups γ ∈ Γf, so by corollary 1 Ω will be globally optimal w.r.t. f. #

Theorem 3. Let f be an order-k additively separable function. ASFOPTIMIZE(f, t)
returns a globally optimum string with probability at least (1-(1-2-k)t)$. To make this
probability at least p we must invoke ASFOPTIMIZE(f, ln(1-p1/$)/ln(1-2-k)). This re-
quires O(2k

$ln($)) evaluations of f and storage of O(1) strings.

Proof: The theorem would follow directly from lemma 9 and theorem 2 if we ignored
the function evaluations required by calls to OPTIMIZEWRTGROUP. Thus to prove
the theorem it is sufficient to show that these calls cannot account for more than
O(2k

$ln($)) function evaluations. Each time OPTIMIZEWRTGROUP is called within
the loop that begins on line 4, |Γ| has just been reduced by 1 by the previous line.
Because |Γ| is initially $ and can never fall below 1, OPTIMIZEWRTGROUP can be
called at most |Γ|-1 times within this loop. Prior to this loop OPTIMIZEWRTGROUP
is called exactly $ times, so the total number of calls is at most 2$-1. Because each
call requires at most 2k function evaluations, the total number of function evaluations
is 2k(2$-1), which is O(2k

$ln($)). The fact that ASFOPTIMIZE requires storage of O(1)
strings is clear by inspection. #

195Upper Bounds on the Time and Space Complexity

5 Experimental Results

To make the performance claims concerning our algorithm more concrete, we now
present a set of experiments using the ASFOPTIMIZE procedure on additively separa-
ble functions. In particular, we examine the performance of ASFOPTIMIZE on order-
5 folded trap functions [1]. Using ASFOPTIMIZE we have solved up to 10,000 bit
problems; results are presented here for 5 ≤ $ ≤ 1,000. Performance data for BOA on
this same problem for 30 ≤ $ ≤ 180 was presented by Pelikan [9].

!

" ! ! ! !

+ ! ! ! !

: ! ! ! !

; ! ! ! !

< ! ! ! ! !

< " ! ! ! !

< + ! ! ! !

= < ! = " ! = # ! = + ! = = ! = : ! = $! = ; ! = % ! =
& ' () * , - . * , ' /

0 1
233
45

61
728 9 6

Fig. 8. Average number of function evaluations required by ASFOPTIMIZE to find the global
optimum of an order-5 folded trap function, for problem sizes between 5 and 1,000. Each data
point is an average of 1,000 runs. Error bars are not shown.

Figure 8 shows the average number of function evaluations required by
ASFOPTIMIZE to find the global optimum as a function of problem size. As ex-
pected, the curve is near-linear. An average of 2,200 evaluations are required for
$=30, while 17,700 are required for $=180. By way of comparison, BOA requires an
average of approximately 220,000 evaluations for $=180 [9]. Thus, it addition to its
guaranteed O(2k

$ln($)) performance as $ tends toward infinity, ASFOPTIMIZE appears
to be quite efficient for problems of modest size.

6 Discussion

Although the algorithm presented in this paper satisfies the operational definition of
competence [1], it is not what one would consider to be a competent problem-solving
algorithm. For any problem of practical interest, we expect that there is some degree
of interaction between every pair (i, j) of positions (i.e., ∆fi(s[j→0]) ≠ ∆fi(s[j→1]) for
some s and s’), so that by our definitions the linkage group partition will be Γ={{1, 2,
..., $}}. For problems with this linkage group partition, our optimization procedure
will attempt to search through all 2$ strings for one that is optimal w.r.t. the single
linkage group in Γ, and thus will degenerate into an exhaustive search.

196 M.J. Streeter

Though the algorithm is clearly brittle as currently defined, we do not believe that
this brittleness is inherent. As discussed by Munemoto [7], the randomized linkage
test employed by our algorithm can employ repeated sampling in order to handle an
additively separable function corrupted by (external) additive noise. Handling noise
in this manner is a first step toward handling the more systematic departures from a
linear model that are characteristic of real optimization problems.

7 Conclusion

We have presented upper bounds on the time and space complexity of optimizing
additively separable functions. We exhibited a simple algorithm that optimizes such
functions and provided upper bounds on the number of function evaluations it requires
to find a globally optimum string with a specified probability. The upper bounds
provided in this paper are sharper than all those that have previously been reported.
While acknowledging that the algorithm as described is not practical, we have sug-
gested that the algorithm could be modified so as to overcome its existing limitations,
and we are optimistic that the ideas presented here can be used to construct more
powerful competent genetic algorithms.

References

1. D. E. Goldberg. The Design of Innovation: Lessons from and for competent genetic algo-
 rithms. Boston, MA: Kluwer Academic Publishers; 2002.

2. D. E. Goldberg, K. Deb, H. Kargupta, and G. Harik. Rapid, accurate optimization of difficult
problems using fast messy genetic algorithms. In Proc. Fifth Int’l. Conf. on Genetic

 Algorithms., 1993, p 56-64.
3. G. R. Harik and D. E. Goldberg. Learning linkage through probabilistic expression. Com-

 puter Methods in Applied Mechanics and Engineering, 186(2-4):295-310, 2000.
4. R. B. Heckendorn and A. H. Wright. Efficient linkage discovery by limited probing. In Proc.

 2003 Genetic and Evolutionary Computation Conf., 2003, p 1003-1014.
5. S. A. Kauffman. The Origins of Order. New York: Oxford University Press; 1993.
6. P. Larrañaga and J. A. Lozano. Estimation of Distribution Algorithms: A New Tool for Evo-

 lutionary Computation. Boston, MA: Kluwer Academic Publishers. 2001.
7. M. Munemoto and D. E. Goldberg. Linkage identification by non-monotonicity detection for

 overlapping functions. Evolutionary Computation, 7(4):377-398, 1999.
8. M. Pelikan. Bayesian Optimization Algorithm: From Single Level to Hierarchy. Ph.D thesis,

University of Illinois Urbana-Champaign. 2002.
9. M. Pelikan, D. E. Goldberg, and E. Cantú-Paz. Linkage problem, distribution estimation,

and Bayesian networks. Evolutionary Computation, 8(3):311-340, 2000.
10. E. D. Weinberger. NP completeness of Kauffman’s NK model, a tunable rugged fitness

 landscape. Santa Fe Institute T.R. 96-02-003. 1996.
11. M. J. Streeter. http://www.cs.cmu.edu/~matts/gecco_2004/index.html.
12. A. H. Wright and R. B. Heckendorn. Personal communication. Jan. 2004.
13. A. H. Wright, R. K. Thompson, and J. Zhang. The computational complexity of N-K fit-

 ness functions. IEEE Transactions on Evolutionary Computation, 4(4):373-379, 2000.

197Upper Bounds on the Time and Space Complexity

	1 Introduction
	1.1 Definitions and Notation

	2 Overview of the Algorithm
	3 Detecting Linkage
	4 Optimizing Additively Separable Functions
	5 Experimental Results
	6 Discussion
	7 Conclusion

